
Models for binary response and survival data

Ana Vázquez
Anna Espinal

Olga Julià
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Motivation

Usually time to event is measured on a continuous scale

Sometimes can be measured on a discrete scale giving a
discrete response variable.

Discrete observed times usually implies tied data.

Need for specific methods of analyzing discrete survival data.



Basic concepts: discrete time

Let T be a discrete random variable defined as the time until
the event of interest.

t1 < t2 < · · · < tj < . . . with probability mass function
pj = P(T = tj), j = 1, 2, . . . and

∑
j pj = 1

Concept Formula

Survival function S(tj) = P(T > tj) =
∑

i :ti>tj
pi

Hazard function h(tj) = P(T = tj |T ≥ tj) =
pj

S(tj−1)
, j = 1, 2, . . .

h(tj) = 1− S(tj )
S(tj−1)



Original dataset

Original dataset:

id T δ Z

1 2 1 0
2 4 1 0
3 4 1 1
4 4 0 1
5 8 1 1

Risk set: all individuals with T ≥ tj



Original dataset

Empirical estimates of hazard:

h(tj) = P(T = tj |T ≥ tj)

h(t1) = 1
5 = h(t = 2)

h(t2) = 2
4 = h(t = 4)

h(t3) = 1 = h(t = 8)



Extended dataset

Extended dataset:

id T order T δ D1 D2 D3 Y Z

1 1 2 1 1 0 0 1 0

2 2 4 1 1 0 0 0 0

3 2 4 1 1 0 0 0 1

4 . 4 0 1 0 0 0 1

5 3 8 1 1 0 0 0 1



Extended dataset

Extended dataset:

id T order T δ D1 D2 D3 Y Z

1 1 2 1 1 0 0 1 0

2 2 4 1 1 0 0 0 0
222 222 444 111 000 111 000 111 000

3 2 4 1 1 0 0 0 1
3 222 444 111 000 111 000 111 111

4 . 4 0 1 0 0 0 1
444 ... 444 000 000 111 000 000 111

5 3 8 1 1 0 0 0 1
555 333 888 111 000 111 000 000 111



Extended dataset

Extended dataset:

id T order T δ D1 D2 D3 Y Z

1 1 2 1 1 0 0 1 0

2 2 4 1 1 0 0 0 0
2 2 4 1 0 1 0 1 0

3 2 4 1 1 0 0 0 1
3 2 4 1 0 1 0 1 1

4 . 4 0 1 0 0 0 1
4 . 4 0 0 1 0 0 1

5 3 8 1 1 0 0 0 1
5 3 8 1 0 1 0 0 1
555 333 888 111 000 000 111 111 111



Extended dataset

Empirical estimates of hazard:

Original dataset
h(tj) = P(T = tj |T ≥ tj)

h(t1) = 1
5 = h(t = 2)

h(t2) = 2
4 = h(t = 4)

h(t3) = 1 = h(t = 8)



Extended dataset

Empirical estimates of hazard:

Original dataset Extended dataset
h(tj) = P(T = tj |T ≥ tj) = h(torderj ) = P(Y = 1|Dj = 1)

h(t1) = 1
5 = h(t = 2) = h(torder1 ) = 1

5

h(t2) = 2
4 = h(t = 4) = h(torder2 ) = 2

4

h(t3) = 1 = h(t = 8) = h(torder3 ) = 1



Extended dataset

k different uncersored times.

D1,D2, . . . ,Dk time dummy variables.

T order indicates the number of risk sets that each individual
belongs (number of rows for each individual).

Y a binary variable taking value equal 1 for the last row of
individuals with uncensored time.

T order T δ D1 D2 . Dk Z1 . Zp Y

1 t1 δ1 1 0 . 0 z11 . z1p y11
2 t2 δ2 1 0 0 0 z21 . z2p y12
2 t2 δ2 0 1 0 0 z21 . z2p y22
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
n tn δn 1 0 0 0 zn1 . znp y1n
n tn δn 0 1 0 0 zn1 . znp y2n
n tn δn 0 0 1 0 zn1 . znp y3n
. . . . 0 . . . . .
n tn δn 0 0 0 1 zn1 . znp ynn



Extended dataset

In each of the datasets can be defined the following functions:

Original dataset: h(tj) = P(T = tj |T ≥ tj)

Extended dataset: h(torderj ) = P(Y = 1|Dj = 1)

then can be proved that

h(tj) = h(torderj )
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Models for binary response

Let Y be the outcome of interest:

Y =

{
1 presence

0 absence

Y1, . . . ,Yn i.i.d

Zi = (Z1i ,Z2i , . . . ,Zpi ) vector of covariates

GOAL: modelling p = P(Y = 1|Z ) = P(Y = 1|Z1, . . . ,Zp)



Models for binary response: link logit

Two link functions:

Link logit:

logit(p) = ln(
p

1− p
) = α + β1Z1 + . . .+ βpZp ⇔

p =
e(α+β1Z1+···+βpZp)

1 + e(α+β1Z1+···+βpZp)

The likelihood function:

L(α, β|Y ,Z) =
n∏

i=1

P(Yi = 1|Zi )
yiP(Yi = 0|Zi )

1−yi

=
n∏

i=1

(
eα+β

′
Zi

1 + eα+β
′Zi

)yi (
1

1 + eα+β
′Zi

)1−yi



Models for binary response: link cloglog

Link cloglog:

cloglog(p) = ln(−ln(1− p)) = η + γ1Z1 + . . .+ γpZp ⇔

p = 1− exp
(
−eη+γ1Z1+...+γpZp

)
The likelihood function:

L(η, γ|Y ,Z) =
n∏

i=1

P(Yi = 1|Zi )
yiP(Yi = 0|Zi )

1−yi

=
k∏

i=1

(
1− exp

(
−eη+γ

′
Zi

))yi (
exp

(
−eη+γ

′
Zi

))1−yi



Models for binary response and discrete survival data

From h(torderj ) = P(Y = 1|Dj = 1), possible models in Extended
dataset:

ln(
h(torder |Z )

1− h(torder |Z )
) = α1D1 + α2D2 + · · ·+ αkDk + βlZ

ln(−ln(1− h(torder |Z ))) = η1D1 + η2D2 + · · ·+ ηkDk + βclZ



Models for binary response and discrete survival data

OBSERVATIONS:

There are more than one intercept, in particular it has one for
every moment of time, so it is like a time-dependent intercept.
For example, if D1 = 1 the others Di are 0, evaluating the
first time in the both models.

The values of Y comes from Bernoulli variables which are not
identically distributed
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Software

Models with binary response may be estimated using the standard
functions/procedures:

Model R SAS

Logit glm(,family=binomial) proc logistic

Cloglog glm(,family=binomial(link= ‘‘ cloglog’’)) proc logistic,link=cloglog



Real example

Capaldi, Crosby and Stoolmiller (1996) study: Predicting the
timing of first sexual intercourse for at-risk adolescent males. This
data was analized in Singer and Willet (2003)

180 school boys were tracked from the 7th through the 12th
grade

Outcome: when they had sex for the first time

At the end of the follow-up in 12th grade, 54 boys (30%) were
still virgins. These observations are censored.

Several characteristics were available in the dataset but we
will focus on the Parental transition variable (PT).



Example: Descriptive Results

n = 180
% cens= 54

180 = 30%

Time PT=0 PT=1 Total

7 2 13 15
13.33% 86.67%

8 2 5 7
28.57% 71.43%

9 8 16 24
33.33% 66.67%

10 8 21 29
27.59% 72.41%

11 10 15 25
40% 60%

12 42 38 80
52.5% 47.5%

Total 72 108 180



Example: Extended dataset

id T order Time Cens PT D1 D2 D3 D4 D5 D6 Y

1 1 7 1 1 1 0 0 0 0 0 1
2 1 7 1 0 1 0 0 0 0 0 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
16 2 8 1 1 1 0 0 0 0 0 0
16 2 8 1 1 0 1 0 0 0 0 1
17 2 8 1 1 1 0 0 0 0 0 0
17 2 8 1 1 0 1 0 0 0 0 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .



Example: Models

With the exentended dataset models for binary response with logit
link and link cloglog that will apply:

Link logit:

ln(
h

1− h
) = α1D1+α2D2+α3D3+α4D4+α5D5+α6D6+βlPT

Link cloglog:

ln(−ln(1−h)) = η1D1+η2D2+η3D3+η4D4+η5D5+η6D6+βclPT



Example: Results

Method β̂ LCIβ UCIβ

Breslow 0.695 0.314 1.077
Efron 0.778 0.395 1.16
EPL 0.867 0.442 1.29
AL 0.782 0.399 1.166

Logit 0.874 0.455 1.309
Cloglog 0.785 0.41 1.180



Real example: PH vs Models for binary response

Assuming a Proportional Hazard models (Cox, 1972) and using the
standard approaches for tied data, there is a relationship between
the effect of covariate among models:

Cox model Models for binary response

β̂EPL β̂l
β̂AL β̂cl

EPL: real discrete time variable

AL: grouped continuous time variable

NOTE: Cox model does not assume that the hazard function is a
probability
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Real example: PH vs Models for binary response

Assuming a Proportional Hazard models (Cox, 1972) and using the
standard approaches for tied data, there is a relationship between
the effect of covariate among models:

Cox model Models for binary response

β̂EPL β̂l
β̂AL β̂cl

EPL: real discrete time variable

AL: grouped continuous time variable

NOTE: Cox model does not assume that the hazard function is a
probability



Real example: PH vs Models for binary response

Method β̂ LCIβ UCIβ

Breslow 0.695 0.314 1.077
Efron 0.778 0.395 1.16
EPLEPLEPL 0.8670.8670.867 0.4420.4420.442 1.291.291.29
AL 0.782 0.399 1.166

LogitLogitLogit 0.8740.8740.874 0.4550.4550.455 1.3091.3091.309
Cloglog 0.785 0.41 1.180



Real example: PH vs Models for binary response

Method β̂ LCIβ UCIβ

Breslow 0.695 0.314 1.077
Efron 0.778 0.395 1.16
EPL 0.867 0.442 1.29
ALALAL 0.7820.7820.782 0.3990.3990.399 1.1661.1661.166

Logit 0.874 0.455 1.309
CloglogCloglogCloglog 0.7850.7850.785 0.410.410.41 1.1801.1801.180



Conclusions

Advantages of using models for binary response instead of Cox
models with ties:

Computationally faster

Same estimations than the ones coming assuming a PH model

These models takes into account that the risk is a probability

Easy implementation in the usual software

It is needed having the extended dataset from the original data
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Questions

THANK YOU FOR YOUR ATTENTION!
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