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Generalized Linear Mixed Models (GLMMs)

Introduction

Complex designs where data is hierarchically structured

Different meanings of the ‘term hierarchical model‘:

To account for clustering

Different hierarchical levels (multi-level analysis)

Bayesian framework (multiple layers of data or prior

information)

Simple hierarchical models are relatively common (random

intercept models)

Applications in ecology, genetics, medicine, psychology, sports

science...
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Generalized Linear Mixed Models (GLMMs)

Introduction to GLMM

GLMMs: a statistical modelling framework incorporating:

Linear combinations of categorical and continuous

predictors, and interactions

Response distributions in the exponential family (binomial,

Poisson, and extensions)

Any smooth, monotonic link function (e.g. logistic,

exponential models)

Flexible combinations of blocking factors (clustering;

random effects)

The main difficulty of GLMMs is the parameter estimation;

not viable an analytic solution that allows maximizing the

marginal likelihood of data.
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Generalized Linear Mixed Models (GLMMs)

Definition of GLMM

Basic idea: Just add random effects on the linear scale

A function g(·) known as the link function and a linear

predictor η as follows:

η = g(µi ) = Xiβ + Ziui , i = 1, . . . , n,

Xi and Zi : design matrices associated fixed and random effects

β: fixed effects covariate vector,

ui : random effect vector,

Random effects: follow a multivariate Gaussian distribution

with mean vector 0 and unknown positive definite covariance

matrix Σ.

Tipically, a normal distribution is assumed for the random

effects.
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Generalized Linear Mixed Models (GLMMs)

Problem: The likelihood

The conditional density of Y given u has the form:

f (Y|u;β) =
n∏

i=1

f (Yi |ui ;β).

We have to evaluate an integral of the form:

l(β,u|Y ) = f (Y ; u,β) =

∫
f (Y |u;β)f (u; Σ) du

Different estimation methods based on approximation

(Laplace,GHQ,PQL,. . . ) or simulation have been developed in

recent years.
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Generalized Linear Mixed Models (GLMMs)

Objective

The purpose of this study is to compare the performance of

three different statistical principles –Marginal likelihood,

Extended likelihood, Bayesian approach– via a simulation

study with different scenarios of overdispersion.

We want to highlight Gauss-Hermite quadrature (GHQ)

estimation, hierarchical (h-likelihood), and Bayesian methods

(Integrated nested Laplace approximation (INLA))
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Principles, Methods and Algorithms

Table: Overview of statistical principles

Principle Method Algorithms

Marginal

Likelihood

Maximum

likelihood

Newton-Raphson, Fisher scoring,

Penalized iteratively reweighted

least squares,

Adaptative Gauss Hermite Quadrature

Extended

likelihood

h-likelihood Newton-Raphson,

Iterative weighted least squares

Bayesian Posterior mean MCMC,

Integrated Nested Laplace Approximations
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Books on likelihood principles

McCulloch, C. E., Searle, S. R., 2001. Generalized, Linear and

Mixed Models. John Wiley & Sons, New York.

Lee, Y., Nelder, J., Pawitan, Y., 2006. Generalized Linear Models

with Random Eects: Unied Analysis via H-likelihood. Chapman &

Hall/CRC, Boca Raton.

Rue, Held. Gaussian Markov Random Fields. Theory and

Applications. Boca Raton: Chapman & Hall 2005
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Likelihood Principles

Classical Inference

Uses marginal likelihood (random effects integrated out)

Included fixed parameters and only observations are treated as

random

Extended likelihood inference

All information in the data about the random and fixed effects

is included in a joint likelihood.

Includes: fixed parameters, unobserved random effects, and

observations as random.

Bayesian inference

Probabilistic framework combines likelihood and prior

information. All parameters and observations as random.
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Statistical software packages in R

For Likelihood Principle

lme4: multiple/crossed; fast; Under active development.

Laplace and GHQ.

Others: glmmML, MASS (glmmPQL), repeat.

For Extended Likelihood Principle

hglm: GLMs with random effects (based on the

h-likelihood). Hierarchical GLMs.

Others: hglm and HGLMM.

For Bayesian Principle

R-INLA: recent; Specialized; spatial and temporal correlation.

Others: glmmBUGS, glmmAK, glmmADMB,MCMCglmm and

R-INLA

More info: glmm.wikidot.com
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Integrated nested Laplace approximation (INLA)

Three main ingredients in INLA:

Gaussian Markov random fields

Latent Gaussian models (LGMs)

Laplace approximations

which together (with a few other things) give a very nice tool for

Bayesian inference:

quick

accurate
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INLA is an alternative to MCMC

much, much faster

R-INLA makes coding very easy

allows non-experts to fit complex models

suitable for a specific class of models, LGMs (GLM, GAM,

spline models, semi-parametric regression, spatial models, log

Gaussian Cox processes, frailty models...)

information webpage: http://www.r-inla.org/

http://www.r-inla.org/
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Folk Wrestling data I

Leonese Wrestling (LW) or Aluche is a traditional and popular

sport of the province of Leon.

The main variable of interest: Incidence of injury

Figure: Historic photo of Leonese Wrestling (From: Vicente Martin)
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Folk Wrestling data II

There is not much information on the frequency of injuries,

their incidence and their causes as a previous stage to carry

out prevention and control programs in this sport.

Figure: A photo of Leonese Wrestling (From: Vicente Martin)
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Real Data Example: Folk Wrestling data

Subjects

The cohort consists of a sample of 213 wrestlers during the

summer seasons 2005-2010.

Design

An unbalanced design with repeated measures.

Response Variable

Frequency of total injuries per combat, follows a Poisson

distribution.

Risk covariates considered

Winner: More falls in favor had against (yes/no)

Weight Category: Light, Medium (reference), Semi-heavy,

Heavy
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The model under study I

Poisson generalized linear mixed model:

log(µi ) = log(λi ) + Xiβ + ui ,

λi : model offset (number of combats)

β: fixed effects parameters,

ui : random effect intercept,

Random effects: independent and N (0, σ2).
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The model under study II

Table: Results from the Poisson mixed model in the folk wrestling data

GLM lme4 hglm INLA

β̂ s.e.(β̂) β̂ s.e.(β̂) β̂ s.e.(β̂) β̂ s.e.(β̂)

Intercept −4.34 0.18 −4.37 0.2 −4.33 0.2 −4.38 0.2

Category

Light 0.25 0.23 0.24 0.25 0.25 0.26 0.25 0.24

Semiheavy 0.1 0.23 0.11 0.26 0.11 0.27 0.1 0.25

Heavy 0.39 0.24 0.4 0.27 0.41 0.28 0.4 0.26

Winner −0.48 0.17 −0.45 0.18 −0.45 0.19 −0.46 0.18

σ2
u – 0.10 0.13 0.07

Dispersion1 1.45 1.26 1.23 1.42

1 Pearson residuals with function glm and for packages lme4 and hglm

2 Negative Binomial dispersion was calculated in the INLA package.
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Simulation Study I

Based on the Poisson model and the wrestling data.

1000 runs for all settings

Two scenarios settings used; Two parameters of

interest(intercept and Winner)

We applied R function glm treating the data as if we dealt

with a GLM.

We assessed the performance of the three statistical principles

in terms of Bias, MSE, ratio and coverage.

Convergence problems and Computation times in all packages.
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Simulation Study II: Scenario 1

Real data set; generated values of number of injuries through

Poisson distribution.

Chose the values of fixed effects from lme4 and values of the

variance of the random effect were set depending on the

overdispersion generated.

We examined 8 combinations: 4 values of

dispersion(1,1.5,3,10), 1 value of the offset (average number

of combat per season: 60) and 2 injuries’ marginal means

(1(small) and 10 (moderate)).
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Simulation Study III: Scenario 2

A balanced design generated (random intercept model) with

sample sizes N=30 and 100 subjects.

A random number of repeated measures was generated using

a discrete uniform distribution ranging from 1 through 6.

Number of counts was generated for each subject and

repeated measure.

We examined 32 combinations: 4 dispersion parameters (1,

1.5, 3, 10), 2 marginal means (1 and 10), 2 offsets (60 and

100), 2 sample sizes (30 and 100) denoting small and

moderate samples.
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Results of Slope parameter I

N: 30
offset: 60

N: 30
offset: 100

N: 100
offset: 60

N: 100
offset: 100

N: Real Data
offset: 60

● ● ● ●● ● ● ●

● ● ● ●● ● ● ●

● ● ● ●● ● ● ●

● ● ●
●● ● ●
●

● ● ● ●● ● ● ●

● ● ● ●● ● ● ●

● ● ● ●● ● ● ●

● ● ●
●● ● ●
●

● ● ● ●● ● ● ●

● ● ● ●● ● ● ●

● ● ● ●● ● ● ●

● ● ●
●● ● ● ●

● ● ● ●● ● ● ●

● ● ● ●● ● ● ●

● ● ● ●● ● ● ●

● ● ●
●● ● ● ●

● ● ● ●● ● ● ●

● ● ● ●● ● ● ●

● ● ● ●● ● ● ●

●
● ● ●

●
● ● ●

−1

0

1

−1

0

1

−1

0

1

−1

0

1

overdispersion: 1
overdispersion: 1.5

overdispersion: 3
overdispersion: 10

glm lme4 hglmINLA glm lme4 hglmINLA glm lme4 hglmINLA glm lme4 hglmINLA glm lme4 hglmINLA
Package

S
lo

pe
 B

ia
s

Package
●●

●●

●●

●●

glm
lme4
hglm
INLA

Marginal
mean

●● 1
10

Figure: Bias of the slope estimate as a function of Φ, µ, offset, and N
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Results of Slope parameter II
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Figure: MSE of the slope estimate as a function of Φ, µ, offset, and N
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Results of Slope parameter III
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Figure: Ratio of the slope estimate as a function of Φ, µ, offset, and N
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Results of Slope parameter IV
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Figure: Coverage of the slope estimate as a function of Φ, µ, offset, and
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Results of Variance Component I
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Figure: Bias of the variance component estimate as a function of Φ, µ,

offset, and N
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Results of Variance Component II
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Figure: MSE of the variance component estimate as a function of Φ, µ,

offset, and N
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Results of Variance Component III
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Figure: Ratio of the variance component estimate as a function of Φ, µ,

offset, and N



Introduction Methods Motivation Simulation Results Conclusions

Conclusions

Approaches involving random effect lme4, INLA and hglm

showed a good performance except in combinations with

huge overdispersion, small marginal mean and sample

sizes.

In most extreme settings, we have found warnings of

convergence in hglm and lme4 packages. To solve a

convergence problem we recommend specifying other starting

values.

In general, the lme4 package seems more adequate than

others in most combinations.

We should take into account the estimation of data with small

sample size and small marginal mean without ignoring

overdispersion.


