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Motivation

BACKGROUND: Prediction Models

® Prediction models are important in various field: marketing, finance, medicine,
meteorology...
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Source:
1) http://www.ibmbigdatahub.com/blog/movie-marketing-predicti peni kend-b ffice

2) http://swissnexsanfrancisco. org/Ourwork/events/emotlonsandfmanclalrlsks
3) http://cliffmass.blogspot.com.es/2013/05/a-new-chapter-for-us-numerical-weather.html
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Motivation

Motivation
BACKGROUND: Prediction Models in Medicine

® Predictive models as support to decision making in health sciences

® |t's use has increased exponentially in the last years
® The covariates (and their relationship with the response variable) are relevant in

the development of prediction models

Number of publications with "prediction model" text in abstract
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Motivation

CATEGORIZATION OF CONTINUOUS VARIABLES IN CLINICAL PREDICTION
MODELS

® Despite the statistical recommendations not to categorize continuous variables
(Royston et al., 2006), due to the loss of information and power in clinical
practice physicians and healthcare managers claim to categorize continuous
variables

® The aim of the categorization may be to separate patients on distinct risk
groups so the prediction model mimics the decision-making process in daily
clinical practice.

® One of the most common methodologies to develop prediction models is the
logistic regression model

® There are approaches to categorize continuous variables based on clinical criteria
and statistical methods; based on graphs or minimum p-value (Mazumdar and
Glassman, 2000), but seek for a unique cut point.
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Motivation

OBJECTIVE

® Obtain the best categorization of a continuous predictor in a logistic regression
model or Cox Proportional Hazards model, so that the prediction ability of the
model does not decrease significantly

® Prediction ability in a logistic regression model is considered as the ability to
discriminate diseased patients from healthy patients.
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Methods

Proposed Methodology

Let Y be a dichotomous response variable and X a continuous
variable which we want to categorize
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Proposed Methodology

Let Y be a dichotomous response variable and X a continuous
variable which we want to categorize

PROPOSAL

® To categorize X in such a way that we obtain the best logistic predictive model
for Y (highest AUC)

® The AUC is the area under the receiver operative characteristic (ROC) curve,
which measures the discrimination ability of a logistic regression model.
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Proposed Methodology

Let Y be a dichotomous response variable and X a continuous
variable which we want to categorize

PROPOSAL

® To categorize X in such a way that we obtain the best logistic predictive model
for Y (highest AUC)

® The AUC is the area under the receiver operative characteristic (ROC) curve,
which measures the discrimination ability of a logistic regression model.
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AddFor
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Algorithms

AddFor algorithm

e Looks sequentially for the k optimal cut points in a grid of size
m

Xcatk the categorized variable taking k + 1 values (I =0,...,k)
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Algorithms

AddFor algorithm

e Looks sequentially for the k optimal cut points in a grid of size

m
e Look for x1 (In a grid of size m) in such a way that the AUC
of the model is maximized

B ezp(Bo + B1lx g, =1)
L+ exp(Bo + B1lxcy,, =1)

P(Y[Xcat,)

Xcatk the categorized variable taking k + 1 values (I =0,...,k)
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Algorithms

AddFor algorithm

e Looks sequentially for the k optimal cut points in a grid of size

m
e Look for x1 (In a grid of size m) in such a way that the AUC

of the model is maximized
B ezp(Bo + B1lx g, =1)
L+ exp(Bo + B1lxcy,, =1)

P(Y[Xcat,)

e We fix 21 and look for xo (2 # x1) so that the AUC of the
model is maximized

exp(Bo + B11xc o, =1) + B2lx g, =2)
1+ exp(Bo + B1 1Xcm2:1) + B21x 0, =2)

P(Y[Xcaty) =

Xcatk the categorized variable taking k + 1 values (I =0,...,k)
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Algorithms

AddFor algorithm

e Looks sequentially for the k optimal cut points in a grid of size

m
e Look for x1 (In a grid of size m) in such a way that the AUC

of the model is maximized
B exp(Bo + B1lx gy, =1)
1+ exp(Bo + ﬁllXCaq:l)

P(Y[Xcat,)

e We fix 21 and look for xo (2 # x1) so that the AUC of the
model is maximized

exp(Bo + B11xc o, =1) + B2lx g, =2)
1+ exp(Bo + B1 1Xcm2:1) + B21x 0, =2)

P(Y[Xcaty) =

Xcatk the categorized variable taking k + 1 values (I =0,...,k)
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Algorithms

AddFor algorithm

e Looks sequentially for the k optimal cut points in a grid of size
m

e Look for x1 (In a grid of size m) in such a way that the AUC
of the model is maximized

_exp(Bo+ Bilxc,,, =1)

T 1+ exp(Bo + B1lxg,,, =1)

P(Y[Xcat,)

e We fix 21 and look for xo (2 # x1) so that the AUC of the
model is maximized
exp(Bo + B11xc o, =1) + B2lx g, =2)
L+exp(Bo + Bilxg,,,=1) + B2lxcy,=2)

P(Y[Xcaty) =

e We repeat the process until we complete the vector of k cut
points v = (x1,...,xk)

Xcatk the categorized variable taking k + 1 values (I =0,...,k)
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Algorithms

Genetic algorithm

e Looks for the vector of k optimal cut points v = (z1,..., k)
by using genetic algorithms

XCatk the categorized variable taking k + 1 values (I =0, ..., k)
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Genetic algorithm

e Looks for the vector of k optimal cut points v = (z1,..., k)
by using genetic algorithms

e The aim is to maximize the AUC of the model

exp(Bo + i1 Bl {Xeu, =1})

PY = 1|Xcatk) ] k
14+ exp(Bo+ >, Bll{Xcatfl})

XCatk the categorized variable taking k + 1 values (I =0, ..., k)
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Algorithms

Genetic algorithm

e Looks for the vector of k optimal cut points v = (z1,..., k)
by using genetic algorithms

e The aim is to maximize the AUC of the model

exp(Bo + i1 Bl {Xeu, =1})
1+ exp(Bo + 211 Bil(Xear, =1})

P(Ye=1|X25: ) =

e The arguments used in developing the genetic algorithm:

XCatk the categorized variable taking k + 1 values (I =0, ..., k)
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Algorithms

Genetic algorithm

e Looks for the vector of k optimal cut points v = (z1,..., k)
by using genetic algorithms

e The aim is to maximize the AUC of the model

exp(Bo + i1 Bl {Xeu, =1})

PY = 1|Xcatk) ] k
14+ exp(Bo+ >, Bll{Xcatﬁl})

e The arguments used in developing the genetic algorithm:
e AUC function to be maximized

XCatk the categorized variable taking k + 1 values (I =0, ..., k)
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Algorithms

Genetic algorithm

e Looks for the vector of k optimal cut points v = (z1,..., k)
by using genetic algorithms

e The aim is to maximize the AUC of the model

exp(Bo + i1 Bl {Xeu, =1})
1+ exp(Bo + 211 Bil(Xear, =1})

P(Ye=1|X25: ) =

e The arguments used in developing the genetic algorithm:
e AUC function to be maximized
e k number of parameters to be estimated

XCatk the categorized variable taking k + 1 values (I =0, ..., k)
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Motivation

Algorithms

Genetic algorithm

e Looks for the vector of k optimal cut points v = (z1,..., k)
by using genetic algorithms
e The aim is to maximize the AUC of the model

exp(Bo + i1 Bl {Xeu, =1})
1 + eXp(BO + Ef:l Bll{Xcatk:l})

P(Ye=1|X25: ) =

e The arguments used in developing the genetic algorithm:

e AUC function to be maximized
e k number of parameters to be estimated
e Range of the covariate X in which we look for the cut points

XCat), the categorized variable taking k + 1 values 1=0,...,k)
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Optimism correction
AUC optimism correction

Step 1. Categorise the predictor variable on the basis of the original
sample {(QL’Z,yZ)}f\’:1 and compute the corresponding AUC, A/U\Capp.
Step 2. For b=1,..., B, generate the bootstrap resample
{(xfb,y;‘b)}ﬁil and categorise the bootstrapped predictor {x:‘b}il on the
basis of the optimal cut points obtained in Step 1.

Step 3. Fit the logistic regression model to the bootstrap resample with
the categorized version of the predictor and compute the corresponding
AUC, AUC,,,, forb=1,...,B.

Step 4. Obtain the predicted probabilities for the original sample based
on the fitted logistic regression model obtained in Step 3 and compute

/\b
the AUC, AUC, forb=1,...,B.

The optimism O is calculated as O = & Eszl |[AUCY,.s — AUC,| and
the bias corrected AUC is then computed as A/U\C’app - 0.
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Optimal number of cut points

Optimal number of cut points

e To determine the optimal number of cut points we propose an
approach based on the difference between the bias-corrected
AUCs obtained for k =1 and k =1+ 1 cut points.
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Optimal number of cut points

Optimal number of cut points

e To determine the optimal number of cut points we propose an
approach based on the difference between the bias-corrected
AUCs obtained for k =1 and k =1+ 1 cut points.

e To determine the need for an extra optimal cut point, we
propose to compute the confidence interval (Cl) for this
difference. An extra cut point is considered to be needed as
long as the Cl does not contain the zero
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Optimal number of cut points

Optimal number of cut points

e To determine the optimal number of cut points we propose an
approach based on the difference between the bias-corrected
AUCs obtained for k =1 and k =1+ 1 cut points.

e To determine the need for an extra optimal cut point, we
propose to compute the confidence interval (Cl) for this
difference. An extra cut point is considered to be needed as
long as the Cl does not contain the zero

e In this case, bootstrap-based methods are proposed for
constructing the Cls
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Optimal number of cut points

Optimal number of cut points

@ Forv=1,...,V, generate the bootstrap resample
{(@5, 92 }ils-

® Compute the bias corrected AUC for the categorised variable
fork=landk=1+1 (A/U\C’;KU and A/U\C;H’v).

© Compute the difference between the bias-corrected AUCs
obtained for k =1l+1and k =1

% % —— %
AUCDfoﬂ) = AUCH—l,U il AUCZ,'U‘
The (1 — ) % limits for the Cl for the difference are given by
AUC pigy, AUC pigy
where A/U\Cfgiff represents the p-percentile of the estimated A/U\C*Diff’v

(v=1,...,V).
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Validation of the proposed methodology

e Let X be a predictor variable where Xz = N(0, 1) for healthy
patients and Xp = N(1.5,1) for diseased patients, and Y a
dichotomous response variable (0 healthy, 1 diseased).

Irantzu Barrio University of the Basque Country UPV/EHU



Motivation Validation Software development Conclusions

Validation of the proposed methodology

e Let X be a predictor variable where Xz = N(0, 1) for healthy
patients and Xp = N(1.5,1) for diseased patients, and Y a
dichotomous response variable (0 healthy, 1 diseased).

e Since both groups have the same variance, we know which are
the optimal cut points for X (Tsuruta and Bax, 2006)
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Validation of the proposed methodology

e Let X be a predictor variable where Xz = N(0, 1) for healthy
patients and Xp = N(1.5,1) for diseased patients, and Y a
dichotomous response variable (0 healthy, 1 diseased).

e Since both groups have the same variance, we know which are
the optimal cut points for X (Tsuruta and Bax, 2006)

e 500 data sets were generated, for 500 and 1000 sample sizes
(n), with 1, 2 and 3 cut points (k)
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Validation of the proposed methodology

Let X be a predictor variable where X = N(0, 1) for healthy
patients and Xp = N(1.5,1) for diseased patients, and Y a
dichotomous response variable (0 healthy, 1 diseased).

Since both groups have the same variance, we know which are
the optimal cut points for X (Tsuruta and Bax, 2006)

500 data sets were generated, for 500 and 1000 sample sizes
(n), with 1, 2 and 3 cut points (k)

For the Addfor 100 and 1000 grid sizes were used (m)
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Validation

Theoretical Optimal cut-points: Results

Obtained cut points with the 500 simulations when k = 1 was
chosen. Optimal cut point was v = (0.77).

20 A O N=500
= N=1000
18
A AR
H : +
1
10 :
oo s l—ﬁ - - -
05
_;_ _1_ — —i— H
. ' :
AF M=AddFor with a grid of size M
00 G=Genetic

T
©

AF 100
4F 1000
AF 100
4F 1000
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Theoretical Optimal cut-points: Results

Obtained cut points with the 500 simulations when k = 3 was
chosen. Optimal cut points were v = (—0.07,0.75, 1.57).

. First cut point 20 Second cut point Third cut point
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Software development

CatPredi package

e We have implemented the proposed methods in the R package
CatPredi
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Software development

CatPredi package

e We have implemented the proposed methods in the R package
CatPredi

e catpredi.binary(formula, cat.var, cat.points = 1,
data, method = c("addfor",'"genetic"), range =
NULL, correct.AUC = TRUE , control =
controlcatpredi.binary(), ...)
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CatPredi package

e We have implemented the proposed methods in the R package
CatPredi

e catpredi.binary(formula, cat.var, cat.points = 1,
data, method = c("addfor",'"genetic"), range =
NULL, correct.AUC = TRUE , control =
controlcatpredi.binary(), ...)

formula: Y ~lorY ~Z1 +...+ 2,

cat.var: X continuous variable

cat.points: k number of cut points

method: AddFor or Genetic algorithm

range: range of X in which to search cut points

control: set control parameters
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CatPredi package

e We have implemented the proposed methods in the R package
CatPredi

e catpredi.binary(formula, cat.var, cat.points = 1,
data, method = c("addfor",'"genetic"), range =
NULL, correct.AUC = TRUE , control =
controlcatpredi.binary(), ...)

formula: Y ~lorY ~Z1 +...+ 2,

cat.var: X continuous variable

cat.points: k number of cut points

method: AddFor or Genetic algorithm

range: range of X in which to search cut points

control: set control parameters

e addfor.g: m grid size for the AddFor algorithm. By default

m = 100
e B: number of bootstrap samples to correct the AUC bias. By
default B =50
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Example

e Y response variable: 84 (4.1%) individuals died and 1966 did
not (95.9%).
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Example

e Y response variable: 84 (4.1%) individuals died and 1966 did
not (95.9%).

e X a continuous variable we want to categorize.
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Example

e Y response variable: 84 (4.1%) individuals died and 1966 did
not (95.9%).

e X a continuous variable we want to categorize.

e 7 a continuous predictor in the multivariate model.
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Example

e Y response variable: 84 (4.1%) individuals died and 1966 did
not (95.9%).

e X a continuous variable we want to categorize.

e 7 a continuous predictor in the multivariate model.

o logit(P(Y =1 Xcaty)) = Bo + 31 Bl Xow =1y + Bri1Z
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Example
e Y response variable: 84 (4.1%) individuals died and 1966 did
not (95.9%).
e X a continuous variable we want to categorize.
e 7 a continuous predictor in the multivariate model.

o logit(P(Y =1 Xcaty)) = Bo + 31 Bl Xow =1y + Bri1Z

B 3
[ TR AR IR0 0L |
£ 100 0 % 10 =
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Example: catpredi.binary

e Search 2 optimal cut points with the AddFor algorithm and
100 grid size.
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Example: catpredi.binary

e Search 2 optimal cut points with the AddFor algorithm and
100 grid size.

e catpredi.binary(formula = Y ~ Z, cat.var = X7,
cat.points = 2, data = datos, method = ’addfor’’)
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Example: catpredi.binary

e Search 2 optimal cut points with the AddFor algorithm and
100 grid size.

e catpredi.binary(formula = Y ~ Z, cat.var = X7,
cat.points = 2, data = datos, method = ’addfor’’)

e Search 3 optimal cut points with the AddFor algorithm and
100 grid size.
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Example: catpredi.binary

e Search 2 optimal cut points with the AddFor algorithm and
100 grid size.

e catpredi.binary(formula = Y ~ Z, cat.var = X7,
cat.points = 2, data = datos, method = ’addfor’’)

e Search 3 optimal cut points with the AddFor algorithm and
100 grid size.

e catpredi.binary(formula = Y ~ Z, cat.var = X7,
cat.points = 3, data = datos, method = ’’addfor’’)
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Example: catpredi.binary

e Search 2 optimal cut points with the AddFor algorithm and
100 grid size.

e catpredi.binary(formula = Y ~ Z, cat.var = X7,
cat.points = 2, data = datos, method = ’addfor’’)

e Search 3 optimal cut points with the AddFor algorithm and
100 grid size.

e catpredi.binary(formula = Y ~ Z, cat.var = X7,
cat.points = 3, data = datos, method = ’’addfor’’)

e Compare 2 and 3 cut points
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Example: summary.catpredi.binary for k = 2

> catX <-catpredi.binary(Y ~ Z, cat.var = "X", cat.points = 2, data = datos, method
> plot(catX)
> summary (catX)

Call:
catpredi.binary(formula = Y ~ Z, cat.var = "X", cat.points = 2,
data = datos, method = "addfor", range = NULL, correct.AUC = TRUE)

Addfor Search Algorithm

Optimal cutpoints Optimal AUC Corrected AUC
47.92 0.7539 NA
62.67 0.7707 0.748

Fitted model for the categorized predictor variable

Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) -6.543282 0.626245 -10.448 < 2e-16 ***
Z 0.025077 0.005667 4.425 9.63e-06 ***
X _cat(47.9,62.7] 1.043084 0.299178 3.486 0.000489 ***
X _cat(62.7,160] 2.254750 0.281895 7.999 1.26e-15 ***
Signif. codes: 0 ‘***/ 0,001 ‘**/ 0.01 ‘*’ 0.05 ‘.’ 0.1 '’ 1
>
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Example: summary.catpredi.binary for k =3

>
> catX.k3 <-catpredi.binary(Y¥ ~ Z, cat.var = "X", cat.points = 3, data = datos, method = "addfor", range$
> summary (catX.k3)

Ccall:
catpredi.binary(formula = Y ~ 2, cat.var = "X", cat.points = 3,
data = datos, method = "addfor", range = NULL, correct.AUC = TRUE)

Addfor Search Algorithm

Optimal cutpoints Optimal AUC Corrected AUC

47.92 0.7539 NA
62.67 0.7707 NA
19.90 0.7787 0.755

Fitted model for the categorized predictor variable

Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) -3.040649  1.357169 -2.240 0.02506
z 0.025320  0.005688  4.452 8.52e-06 ***
X_cat(19.9,47.9] -3.573308  1.268797 -2.816 0.00486 **
X_cat(47.9,62.7) -2.485434 1.267248 ~-1.961 0.04985 *
X_cat(62.7,160] ~-1.273543 1.263033 -1.008 0.31330
sxlgnu. codes: 0 ‘w%%/ 0,001 ‘**/ 0,01 ‘*/ 0.05 ‘.’ 0.1 '’ 1
>
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== memmmmemm mem e

> compare <-comp.cutpoints.binary(catX.k2, catX.k3, V = 100)
> compare

o o e o o e e o e e o e e e e e e o e o

Compare optimal number of cut points
o ok e o o e o e o e o e o i o o o e o o o o o e o o e o e o

Bias corrected AUC difference: 0.0076
95% Bootstrap Confidence Interval: ( -0.006 , 0.0317 )
> |

Irantzu Barrio University of the Basque Country UPV/EHU



Software development

ILL e el 1 I el L
50 100 150 50 100 150
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Conclusions

e We have developed a valid method to obtain optimal cut
points in logistic prediction models

e We have implemented these methods in a R package witch is
an easy to use tool

e This methodology has been extended to time to event
outcomes and it is also implemented in the R package
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Muchas Gracias
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