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Motivation

Clinician wants to design a phase I cancer trials with drug combinations.

She can identify a certain toxicity from one of the drugs.
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Dose-toxicity model (I)

Some notation:
Let D be the dose limiting toxicity (DLT) or toxicity binary indicator.
Let A be the attribution binary indicator.
Let (δ1, δ2) indicate to which drug the toxicity is attributed (i.e.,
(δ1 = 1, δ2 = 0) represents a toxicity attributed to drug 1).

Depending on the outcomes, we have three different types of data.
Patients with no toxicity.
Patients with non attributable toxicity.
Patients with attributable toxicity.

Assumption: When a toxicity is attributed, we assume that we are 100% sure
about the attribution.
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Jiménez, Tighiouart, Gasparini Marie Sk lodowska-Curie ITN “IDEAS” 6 / 23



Dose-toxicity model (I)

Some notation:
Let D be the dose limiting toxicity (DLT) or toxicity binary indicator.
Let A be the attribution binary indicator.
Let (δ1, δ2) indicate to which drug the toxicity is attributed (i.e.,
(δ1 = 1, δ2 = 0) represents a toxicity attributed to drug 1).

Depending on the outcomes, we have three different types of data.
Patients with no toxicity.
Patients with non attributable toxicity.
Patients with attributable toxicity.

Assumption: When a toxicity is attributed, we assume that we are 100% sure
about the attribution.
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Dose-toxicity model (II)

Pr(D = 1) = π,
Pr(A = 1|D = 1) = η,
Pr(δ1 = 1, δ2 = 0|D = 1,A = 1) = π(1,0)

π ,

Pr(δ1 = 0, δ2 = 1|D = 1,A = 1) = π(0,1)

π ,

Pr(δ1 = 1, δ2 = 1|D = 1,A = 1) = π(1,1)

π ,
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Dose-toxicity model (III)

where

π(δ1,δ2) = (xα)δ1 (1− xα)1−δ1 (yβ)δ2
(
1− yβ

)1−δ2

+ (−1)(δ1+δ2)xα (1− xα) yβ
(
1− yβ

) e−γ − 1
e−γ + 1 ,

(1)

and

π = π(1,0) + π(0,1) + π(1,1). (2)
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Dose-toxicity model (IV)

Toxicity
(D)

Attribution
(A) δ1 δ2 Contribution to the Likelihood

0 - - -
1− π = 1−

[
xα + yβ − xαyβ−

xα (1− xα) yβ
(
1− yβ

) e−γ−1
e−γ+1

]
1 0 - -

π × (1− η) =
[
xα + yβ − xαyβ−

xα (1− xα) yβ
(
1− yβ

) e−γ−1
e−γ+1

]
× (1− η)

1 1 1 0 π × η × π(1,0)

π = η
[
xα(1− yβ)−

xα (1− xα) yβ
(
1− yβ

) e−γ−1
e−γ+1

]
1 1 0 1 π × η × π(0,1)

π = η
[
yβ(1− xα)−

xα (1− xα) yβ
(
1− yβ

) e−γ−1
e−γ+1

]
1 1 1 1 π × η × π(1,1)

π = η
[
xα × yβ+

xα (1− xα) yβ
(
1− yβ

) e−γ−1
e−γ+1

]
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Dose-toxicity model (V)

Prior distribution of the model parameters:
Pr(α) = Uniform(0.2,2).
Pr(β) = Uniform(0.2,2).
Pr(γ) = Gamma(0.1,0.1).

Posterior distribution of the model parameters:

Pr(α, β, γ | data) ∝

Pr(α, β, γ)×
n∏

i=1

[(
η × π(δ1,δ2)

i
)Ai (

πi (1− η)
)1−Ai ]Di (1− πi )1−Di .

(3)
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Dose Escalation Algorithm

1 The first cohort in the trials receives the same dose combination. Hence
(x1, y1) = (Xmin,Ymin) and (x2, y2) = (Xmin,Ymin).

2 In the second cohort.
Patient 3 receives doses (x3, y3), where y3 = y1 and x3 is equal to the dose
x ∈ C such that

|Prob(D = 1|x , y = y1)− θ|
is closer to zero. If a toxicity was cause by drug A, then x3 cannot be higher
than x1.
Patient 4 receives doses (x4, y4) where x4 = x2 and y4 is equal to the dose
y ∈ C such that

|Prob(D = 1|x = x2, y)− θ|
is closer to zero. If a toxicity was cause by drug B, then y4 cannot be higher
than y2.

3 Keep adding patients until the maximum sample size is reached.
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Design Operations Characteristics

Safety:
Average % of toxicities.
% of trials with toxicity rate greater that θ + 0.05 and θ + 0.10.

Efficiency:
Continuous doses:

1 Pointwise average relative minimum distance between the true MTD and the
estimated MTD curves (average bias).

2 Pointwise percent selection.

Discrete doses:
1 Percentage of MTD selection.
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Simulation Results (I)
Safety results:

Average
% of toxicities

% of trials
with toxicity

rate > θ + 0.05

% of trials
with toxicity rate
> θ + 0.10

Scenario 1

η = 0.00 33.62 25.90 4.10
η = 0.10 32.67 22.60 4.80
η = 0.25 31.55 17.60 2.70
η = 0.40 30.70 13.30 2.00
η = 1.00 27.87 4.70 0.20

Scenario 2

η = 0.00 30.64 9.40 0.90
η = 0.10 29.69 7.30 0.40
η = 0.25 28.76 5.00 0.20
η = 0.40 28.04 4.10 0.30
η = 1.00 25.60 1.80 0.10

Scenario 3

η = 0.00 27.47 2.00 0.00
η = 0.10 26.80 1.80 0.00
η = 0.25 25.99 1.30 0.00
η = 0.40 25.37 0.70 0.00
η = 1.00 23.57 0.20 0.00
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Simulation Results (II)

Efficiency results:

Average bias:

Scenario1 Scenario 2 Scenario 3
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Simulation Results (III)

Efficiency results:

Average percent of selection:

Scenario1 Scenario 2 Scenario 3
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Simulation Results (IV)
Discrete dose levels scenarios (dose levels probability of toxicity generated with
our own model):

1 2 3 4 1 2 3 4 5 6
Scenario 1 Scenario 4

4 0.39 0.46 0.52 0.58 0.39 0.43 0.47 0.51 0.55 0.58
3 0.31 0.38 0.46 0.52 0.30 0.35 0.40 0.44 0.48 0.52
2 0.22 0.31 0.38 0.46 0.22 0.27 0.32 0.37 0.41 0.46
1 0.13 0.22 0.31 0.39 0.13 0.19 0.24 0.29 0.34 0.39

Scenario 2 Scenario 5
4 0.30 0.36 0.42 0.48 0.30 0.33 0.37 0.40 0.44 0.48
3 0.22 0.28 0.35 0.42 0.22 0.26 0.29 0.33 0.38 0.42
2 0.14 0.21 0.28 0.36 0.14 0.18 0.22 0.27 0.31 0.35
1 0.07 0.14 0.22 0.30 0.07 0.11 0.16 0.20 0.25 0.30

Scenario 3 Scenario 6
4 0.23 0.27 0.33 0.39 0.23 0.25 0.28 0.32 0.35 0.39
3 0.16 0.21 0.26 0.33 0.16 0.18 0.22 0.25 0.29 0.33
2 0.09 0.14 0.21 0.27 0.09 0.12 0.16 0.19 0.23 0.27
1 0.04 0.09 0.16 0.23 0.04 0.07 0.11 0.14 0.19 0.23

Jiménez, Tighiouart, Gasparini Marie Sk lodowska-Curie ITN “IDEAS” 19 / 23



Simulation Results (V)
Percentage of MTD selection:

% of MTD
selection for
θ ± 0.10

% of MTD
selection for
θ ± 0.10

η = 0.00

Scenario 1

91.40

Scenario4

90.00
η = 0.10 92.50 91.30
η = 0.25 90.90 89.40
η = 0.40 90.90 89.80
η = 1.00 84.90 84.40
η = 0.00

Scenario2

78.10

Scenario 5

82.90
η = 0.10 79.80 82.80
η = 0.25 83.00 85.00
η = 0.40 83.50 85.70
η = 1.00 80.90 81.90
η = 0.00

Scenario 3

99.10

Scenario 6

98.80
η = 0.10 99.30 98.60
η = 0.25 97.10 96.20
η = 0.40 95.90 94.00
η = 1.00 86.90 84.80
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Conclusions

Bayesian adaptive design for drug combination trials that includes toxicity
attributions.

Improvement of safety results (reduction of average % of toxicities up to 5%)
while maintaining high percentage of MTD selection (always > 78%).

Best overall results obtained when attributing around 40% of the toxicities.
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Thanks!

Thanks for your attention! Any questions?

Hope you slept comfortably!
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